Partial sum process of orthogonal series as rough process
<p>In this thesis, we investigate the pathwise regularity of partial sum process of general orthogonal series, and prove that the partial sum process is a geometric 2-rough process under the same condition as in Menshov-Rademacher Theorem. For Fourier series, the condition can be improved, and...
Huvudupphovsman: | Yang, D |
---|---|
Övriga upphovsmän: | Lyons, T |
Materialtyp: | Lärdomsprov |
Språk: | English |
Publicerad: |
2012
|
Ämnen: |
Liknande verk
-
The partial sum process of orthogonal expansion as geometric rough
process with Fourier series as an example---an improvement of
Menshov-Rademacher theorem
av: Yang, D, et al.
Publicerad: (2011) -
Orthogonal transforms for digital signal processing /
av: 230635 Ahmed, Nasir
Publicerad: (1975) -
Eisenstein series and convolution sums
av: Aygin, Zafer Selcuk
Publicerad: (2020) -
The infinite sums of reciprocals and the partial sums of Chebyshev polynomials
av: Fan Yang, et al.
Publicerad: (2022-01-01) -
Rough analysis and stochastic partial differential equations
av: Jin, R
Publicerad: (2024)