Solid-state quantum memory using the 31P nuclear spin
The transfer of information between different physical forms - for example processing entities and memory - is a central theme in communication and computation. This is crucial in quantum computation, where great effort must be taken to protect the integrity of a fragile quantum bit (qubit). However...
Κύριοι συγγραφείς: | , , , , , , , , , |
---|---|
Μορφή: | Journal article |
Γλώσσα: | English |
Έκδοση: |
2008
|
_version_ | 1826305110815277056 |
---|---|
author | Morton, J Tyryshkin, A Brown, R Shankar, S Lovett, B Ardavan, A Schenkel, T Haller, E Ager, J Lyon, SA |
author_facet | Morton, J Tyryshkin, A Brown, R Shankar, S Lovett, B Ardavan, A Schenkel, T Haller, E Ager, J Lyon, SA |
author_sort | Morton, J |
collection | OXFORD |
description | The transfer of information between different physical forms - for example processing entities and memory - is a central theme in communication and computation. This is crucial in quantum computation, where great effort must be taken to protect the integrity of a fragile quantum bit (qubit). However, transfer of quantum information is particularly challenging, as the process must remain coherent at all times to preserve the quantum nature of the information. Here we demonstrate the coherent transfer of a superposition state in an electron-spin 'processing' qubit to a nuclear-spin 'memory' qubit, using a combination of microwave and radio-frequency pulses applied to 31P donors in an isotopically pure 28Si crystal. The state is left in the nuclear spin on a timescale that is long compared with the electron decoherence time, and is then coherently transferred back to the electron spin, thus demonstrating the 31P nuclear spin as a solid-state quantum memory. The overall store-readout fidelity is about 90 per cent, with the loss attributed to imperfect rotations, and can be improved through the use of composite pulses. The coherence lifetime of the quantum memory element at 5.5 K exceeds 1 s. ©2008 Macmillan Publishers Limited. All rights reserved. |
first_indexed | 2024-03-07T06:27:54Z |
format | Journal article |
id | oxford-uuid:f4f37098-0803-4a08-a641-5dac87c9c872 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T06:27:54Z |
publishDate | 2008 |
record_format | dspace |
spelling | oxford-uuid:f4f37098-0803-4a08-a641-5dac87c9c8722022-03-27T12:23:41ZSolid-state quantum memory using the 31P nuclear spinJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:f4f37098-0803-4a08-a641-5dac87c9c872EnglishSymplectic Elements at Oxford2008Morton, JTyryshkin, ABrown, RShankar, SLovett, BArdavan, ASchenkel, THaller, EAger, JLyon, SAThe transfer of information between different physical forms - for example processing entities and memory - is a central theme in communication and computation. This is crucial in quantum computation, where great effort must be taken to protect the integrity of a fragile quantum bit (qubit). However, transfer of quantum information is particularly challenging, as the process must remain coherent at all times to preserve the quantum nature of the information. Here we demonstrate the coherent transfer of a superposition state in an electron-spin 'processing' qubit to a nuclear-spin 'memory' qubit, using a combination of microwave and radio-frequency pulses applied to 31P donors in an isotopically pure 28Si crystal. The state is left in the nuclear spin on a timescale that is long compared with the electron decoherence time, and is then coherently transferred back to the electron spin, thus demonstrating the 31P nuclear spin as a solid-state quantum memory. The overall store-readout fidelity is about 90 per cent, with the loss attributed to imperfect rotations, and can be improved through the use of composite pulses. The coherence lifetime of the quantum memory element at 5.5 K exceeds 1 s. ©2008 Macmillan Publishers Limited. All rights reserved. |
spellingShingle | Morton, J Tyryshkin, A Brown, R Shankar, S Lovett, B Ardavan, A Schenkel, T Haller, E Ager, J Lyon, SA Solid-state quantum memory using the 31P nuclear spin |
title | Solid-state quantum memory using the 31P nuclear spin |
title_full | Solid-state quantum memory using the 31P nuclear spin |
title_fullStr | Solid-state quantum memory using the 31P nuclear spin |
title_full_unstemmed | Solid-state quantum memory using the 31P nuclear spin |
title_short | Solid-state quantum memory using the 31P nuclear spin |
title_sort | solid state quantum memory using the 31p nuclear spin |
work_keys_str_mv | AT mortonj solidstatequantummemoryusingthe31pnuclearspin AT tyryshkina solidstatequantummemoryusingthe31pnuclearspin AT brownr solidstatequantummemoryusingthe31pnuclearspin AT shankars solidstatequantummemoryusingthe31pnuclearspin AT lovettb solidstatequantummemoryusingthe31pnuclearspin AT ardavana solidstatequantummemoryusingthe31pnuclearspin AT schenkelt solidstatequantummemoryusingthe31pnuclearspin AT hallere solidstatequantummemoryusingthe31pnuclearspin AT agerj solidstatequantummemoryusingthe31pnuclearspin AT lyonsa solidstatequantummemoryusingthe31pnuclearspin |