Posterior consistency for Bayesian inverse problems through stability and regression results
In the Bayesian approach, the a priori knowledge about the input of a mathematical model is described via a probability measure. The joint distribution of the unknown input and the data is then conditioned, using Bayes' formula, giving rise to the posterior distribution on the unknown input. In...
主要作者: | Vollmer, S |
---|---|
格式: | Journal article |
語言: | English |
出版: |
2013
|
相似書籍
-
Automatic Tempered Posterior Distributions for Bayesian Inversion Problems
由: Luca Martino, et al.
出版: (2021-04-01) -
Kernel Sliced Inverse Regression: Regularization and Consistency
由: Qiang Wu, et al.
出版: (2013-01-01) -
Robust Bayesian Regression with Synthetic Posterior Distributions
由: Shintaro Hashimoto, et al.
出版: (2020-06-01) -
Bayesian detection of causal rare variants under posterior consistency.
由: Faming Liang, et al.
出版: (2013-01-01) -
Bayesian inverse problems and seismic inversion
由: Lim, S
出版: (2016)