Posterior consistency for Bayesian inverse problems through stability and regression results
In the Bayesian approach, the a priori knowledge about the input of a mathematical model is described via a probability measure. The joint distribution of the unknown input and the data is then conditioned, using Bayes' formula, giving rise to the posterior distribution on the unknown input. In...
Hlavní autor: | Vollmer, S |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
2013
|
Podobné jednotky
-
Automatic Tempered Posterior Distributions for Bayesian Inversion Problems
Autor: Luca Martino, a další
Vydáno: (2021-04-01) -
Kernel Sliced Inverse Regression: Regularization and Consistency
Autor: Qiang Wu, a další
Vydáno: (2013-01-01) -
Robust Bayesian Regression with Synthetic Posterior Distributions
Autor: Shintaro Hashimoto, a další
Vydáno: (2020-06-01) -
Bayesian detection of causal rare variants under posterior consistency.
Autor: Faming Liang, a další
Vydáno: (2013-01-01) -
Bayesian inverse problems and seismic inversion
Autor: Lim, S
Vydáno: (2016)