Plasma metabolomics implicates modified transfer RNAs and altered bioenergetics in the outcomes of pulmonary arterial hypertension
<strong>Background:</strong> Pulmonary arterial hypertension (PAH) is a heterogeneous disorder with high mortality. <strong>Methods:</strong> We conducted a comprehensive study of plasma metabolites using ultraperformance liquid chromatography mass spectrometry to identify p...
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
American Heart Association
2016
|
_version_ | 1826305164124880896 |
---|---|
author | Rhodes, CJ Ghataorhe, P Wharton, J Rue-Albrecht, KC Hadinnapola, C Watson, G Bleda, M Haimel, M Coghlan, G Corris, PA Howard, LS Kiely, DG Peacock, AJ Pepke-Zaba, J Toshner, MR Wort, SJ Gibbs, JSR Lawrie, A Gräf, S Morrell, NW Wilkins, MR |
author_facet | Rhodes, CJ Ghataorhe, P Wharton, J Rue-Albrecht, KC Hadinnapola, C Watson, G Bleda, M Haimel, M Coghlan, G Corris, PA Howard, LS Kiely, DG Peacock, AJ Pepke-Zaba, J Toshner, MR Wort, SJ Gibbs, JSR Lawrie, A Gräf, S Morrell, NW Wilkins, MR |
author_sort | Rhodes, CJ |
collection | OXFORD |
description | <strong>Background:</strong> Pulmonary arterial hypertension (PAH) is a heterogeneous disorder with high mortality. <strong>Methods:</strong> We conducted a comprehensive study of plasma metabolites using ultraperformance liquid chromatography mass spectrometry to identify patients at high risk of early death, to identify patients who respond well to treatment, and to provide novel molecular insights into disease pathogenesis. <strong>Results:</strong> Fifty-three circulating metabolites distinguished well-phenotyped patients with idiopathic or heritable PAH (n=365) from healthy control subjects (n=121) after correction for multiple testing (P<7.3e-5) and confounding factors, including drug therapy, and renal and hepatic impairment. A subset of 20 of 53 metabolites also discriminated patients with PAH from disease control subjects (symptomatic patients without pulmonary hypertension, n=139). Sixty-two metabolites were prognostic in PAH, with 36 of 62 independent of established prognostic markers. Increased levels of tRNA-specific modified nucleosides (N2,N2-dimethylguanosine, N1-methylinosine), tricarboxylic acid cycle intermediates (malate, fumarate), glutamate, fatty acid acylcarnitines, tryptophan, and polyamine metabolites and decreased levels of steroids, sphingomyelins, and phosphatidylcholines distinguished patients from control subjects. The largest differences correlated with increased risk of death, and correction of several metabolites over time was associated with a better outcome. Patients who responded to calcium channel blocker therapy had metabolic profiles similar to those of healthy control subjects. <strong>Conclusions:</strong> Metabolic profiles in PAH are strongly related to survival and should be considered part of the deep phenotypic characterization of this disease. Our results support the investigation of targeted therapeutic strategies that seek to address the alterations in translational regulation and energy metabolism that characterize these patients. |
first_indexed | 2024-03-07T06:28:43Z |
format | Journal article |
id | oxford-uuid:f5373f16-e649-40f0-aa61-dee4db9edd4f |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T06:28:43Z |
publishDate | 2016 |
publisher | American Heart Association |
record_format | dspace |
spelling | oxford-uuid:f5373f16-e649-40f0-aa61-dee4db9edd4f2022-03-27T12:25:44ZPlasma metabolomics implicates modified transfer RNAs and altered bioenergetics in the outcomes of pulmonary arterial hypertensionJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:f5373f16-e649-40f0-aa61-dee4db9edd4fEnglishSymplectic Elements at OxfordAmerican Heart Association2016Rhodes, CJGhataorhe, PWharton, JRue-Albrecht, KCHadinnapola, CWatson, GBleda, MHaimel, MCoghlan, GCorris, PAHoward, LSKiely, DGPeacock, AJPepke-Zaba, JToshner, MRWort, SJGibbs, JSRLawrie, AGräf, SMorrell, NWWilkins, MR<strong>Background:</strong> Pulmonary arterial hypertension (PAH) is a heterogeneous disorder with high mortality. <strong>Methods:</strong> We conducted a comprehensive study of plasma metabolites using ultraperformance liquid chromatography mass spectrometry to identify patients at high risk of early death, to identify patients who respond well to treatment, and to provide novel molecular insights into disease pathogenesis. <strong>Results:</strong> Fifty-three circulating metabolites distinguished well-phenotyped patients with idiopathic or heritable PAH (n=365) from healthy control subjects (n=121) after correction for multiple testing (P<7.3e-5) and confounding factors, including drug therapy, and renal and hepatic impairment. A subset of 20 of 53 metabolites also discriminated patients with PAH from disease control subjects (symptomatic patients without pulmonary hypertension, n=139). Sixty-two metabolites were prognostic in PAH, with 36 of 62 independent of established prognostic markers. Increased levels of tRNA-specific modified nucleosides (N2,N2-dimethylguanosine, N1-methylinosine), tricarboxylic acid cycle intermediates (malate, fumarate), glutamate, fatty acid acylcarnitines, tryptophan, and polyamine metabolites and decreased levels of steroids, sphingomyelins, and phosphatidylcholines distinguished patients from control subjects. The largest differences correlated with increased risk of death, and correction of several metabolites over time was associated with a better outcome. Patients who responded to calcium channel blocker therapy had metabolic profiles similar to those of healthy control subjects. <strong>Conclusions:</strong> Metabolic profiles in PAH are strongly related to survival and should be considered part of the deep phenotypic characterization of this disease. Our results support the investigation of targeted therapeutic strategies that seek to address the alterations in translational regulation and energy metabolism that characterize these patients. |
spellingShingle | Rhodes, CJ Ghataorhe, P Wharton, J Rue-Albrecht, KC Hadinnapola, C Watson, G Bleda, M Haimel, M Coghlan, G Corris, PA Howard, LS Kiely, DG Peacock, AJ Pepke-Zaba, J Toshner, MR Wort, SJ Gibbs, JSR Lawrie, A Gräf, S Morrell, NW Wilkins, MR Plasma metabolomics implicates modified transfer RNAs and altered bioenergetics in the outcomes of pulmonary arterial hypertension |
title | Plasma metabolomics implicates modified transfer RNAs and altered bioenergetics in the outcomes of pulmonary arterial hypertension |
title_full | Plasma metabolomics implicates modified transfer RNAs and altered bioenergetics in the outcomes of pulmonary arterial hypertension |
title_fullStr | Plasma metabolomics implicates modified transfer RNAs and altered bioenergetics in the outcomes of pulmonary arterial hypertension |
title_full_unstemmed | Plasma metabolomics implicates modified transfer RNAs and altered bioenergetics in the outcomes of pulmonary arterial hypertension |
title_short | Plasma metabolomics implicates modified transfer RNAs and altered bioenergetics in the outcomes of pulmonary arterial hypertension |
title_sort | plasma metabolomics implicates modified transfer rnas and altered bioenergetics in the outcomes of pulmonary arterial hypertension |
work_keys_str_mv | AT rhodescj plasmametabolomicsimplicatesmodifiedtransferrnasandalteredbioenergeticsintheoutcomesofpulmonaryarterialhypertension AT ghataorhep plasmametabolomicsimplicatesmodifiedtransferrnasandalteredbioenergeticsintheoutcomesofpulmonaryarterialhypertension AT whartonj plasmametabolomicsimplicatesmodifiedtransferrnasandalteredbioenergeticsintheoutcomesofpulmonaryarterialhypertension AT ruealbrechtkc plasmametabolomicsimplicatesmodifiedtransferrnasandalteredbioenergeticsintheoutcomesofpulmonaryarterialhypertension AT hadinnapolac plasmametabolomicsimplicatesmodifiedtransferrnasandalteredbioenergeticsintheoutcomesofpulmonaryarterialhypertension AT watsong plasmametabolomicsimplicatesmodifiedtransferrnasandalteredbioenergeticsintheoutcomesofpulmonaryarterialhypertension AT bledam plasmametabolomicsimplicatesmodifiedtransferrnasandalteredbioenergeticsintheoutcomesofpulmonaryarterialhypertension AT haimelm plasmametabolomicsimplicatesmodifiedtransferrnasandalteredbioenergeticsintheoutcomesofpulmonaryarterialhypertension AT coghlang plasmametabolomicsimplicatesmodifiedtransferrnasandalteredbioenergeticsintheoutcomesofpulmonaryarterialhypertension AT corrispa plasmametabolomicsimplicatesmodifiedtransferrnasandalteredbioenergeticsintheoutcomesofpulmonaryarterialhypertension AT howardls plasmametabolomicsimplicatesmodifiedtransferrnasandalteredbioenergeticsintheoutcomesofpulmonaryarterialhypertension AT kielydg plasmametabolomicsimplicatesmodifiedtransferrnasandalteredbioenergeticsintheoutcomesofpulmonaryarterialhypertension AT peacockaj plasmametabolomicsimplicatesmodifiedtransferrnasandalteredbioenergeticsintheoutcomesofpulmonaryarterialhypertension AT pepkezabaj plasmametabolomicsimplicatesmodifiedtransferrnasandalteredbioenergeticsintheoutcomesofpulmonaryarterialhypertension AT toshnermr plasmametabolomicsimplicatesmodifiedtransferrnasandalteredbioenergeticsintheoutcomesofpulmonaryarterialhypertension AT wortsj plasmametabolomicsimplicatesmodifiedtransferrnasandalteredbioenergeticsintheoutcomesofpulmonaryarterialhypertension AT gibbsjsr plasmametabolomicsimplicatesmodifiedtransferrnasandalteredbioenergeticsintheoutcomesofpulmonaryarterialhypertension AT lawriea plasmametabolomicsimplicatesmodifiedtransferrnasandalteredbioenergeticsintheoutcomesofpulmonaryarterialhypertension AT grafs plasmametabolomicsimplicatesmodifiedtransferrnasandalteredbioenergeticsintheoutcomesofpulmonaryarterialhypertension AT morrellnw plasmametabolomicsimplicatesmodifiedtransferrnasandalteredbioenergeticsintheoutcomesofpulmonaryarterialhypertension AT wilkinsmr plasmametabolomicsimplicatesmodifiedtransferrnasandalteredbioenergeticsintheoutcomesofpulmonaryarterialhypertension |