Adversarial robustness guarantees for classification with Gaussian Processes
We investigate adversarial robustness of Gaussian Process classification (GPC) models. Specifically, given a compact subset of the input space T⊆ℝd enclosing a test point x∗ and a GPC trained on a dataset , we aim to compute the minimum and the maximum classification probability for the GPC over al...
المؤلفون الرئيسيون: | Blaas, A, Patane, A, Laurenti, L, Cardelli, L, Kwiatkowska, M, Roberts, S |
---|---|
التنسيق: | Conference item |
اللغة: | English |
منشور في: |
Proceedings of Machine Learning Research
2020
|
مواد مشابهة
-
Adversarial robustness guarantees for Gaussian processes
حسب: Patane, A, وآخرون
منشور في: (2022) -
Robustness guarantees for Bayesian inference with Gaussian processes
حسب: Cardelli, L, وآخرون
منشور في: (2019) -
Safety guarantees for iterative predictions with Gaussian Processes
حسب: Polymenakos, K, وآخرون
منشور في: (2021) -
Statistical guarantees for the robustness of Bayesian neural networks
حسب: Cardelli, L, وآخرون
منشور في: (2019) -
On the adversarial robustness of Gaussian processes
حسب: Patanè, A
منشور في: (2020)