Adversarial robustness guarantees for classification with Gaussian Processes
We investigate adversarial robustness of Gaussian Process classification (GPC) models. Specifically, given a compact subset of the input space T⊆ℝd enclosing a test point x∗ and a GPC trained on a dataset , we aim to compute the minimum and the maximum classification probability for the GPC over al...
Huvudupphovsmän: | Blaas, A, Patane, A, Laurenti, L, Cardelli, L, Kwiatkowska, M, Roberts, S |
---|---|
Materialtyp: | Conference item |
Språk: | English |
Publicerad: |
Proceedings of Machine Learning Research
2020
|
Liknande verk
Liknande verk
-
Adversarial robustness guarantees for Gaussian processes
av: Patane, A, et al.
Publicerad: (2022) -
Robustness guarantees for Bayesian inference with Gaussian processes
av: Cardelli, L, et al.
Publicerad: (2019) -
Safety guarantees for iterative predictions with Gaussian Processes
av: Polymenakos, K, et al.
Publicerad: (2021) -
Statistical guarantees for the robustness of Bayesian neural networks
av: Cardelli, L, et al.
Publicerad: (2019) -
On the adversarial robustness of Gaussian processes
av: Patanè, A
Publicerad: (2020)