Hyperbolically embedded subgroups and quasi-isometries of pairs
We give technical conditions for a quasi-isometry of pairs to preserve a subgroup being hyperbolically embedded. We consider applications to the quasi-isometry and commensurability invariance of acylindrical hyperbolicity of finitely generated groups.
Main Authors: | Hughes, S, Martínez-Pedroza, E |
---|---|
格式: | Journal article |
语言: | English |
出版: |
Cambridge University Press
2023
|
相似书籍
-
Quasi-isometry invariance of relative filling functions
由: Hughes, S, et al.
出版: (2023) -
Asymptotics cones and quasi-isometry invariants for hyperbolic metric spaces
由: Drutu, C
出版: (2001) -
Discreteness and Convergence of Complex Hyperbolic Isometry Groups
由: Xi Fu
出版: (2013-01-01) -
On Harmonic Quasiconformal Quasi-Isometries
由: Vuorinen M, et al.
出版: (2010-01-01) -
On Harmonic Quasiconformal Quasi-Isometries
由: M. Mateljević, et al.
出版: (2010-01-01)