Reversible Jump MCMC Simulated Annealing for Neural Networks

We propose a novel reversible jump Markov chain Monte Carlo (MCMC) simulated annealing algorithm to optimize radial basis function (RBF) networks. This algorithm enables us to maximize the joint posterior distribution of the network parameters and the number of basis functions. It performs a global...

Full description

Bibliographic Details
Main Authors: Andrieu, C, de Freitas, N, Doucet, A
Format: Conference item
Published: Morgan Kaufmann 2000
_version_ 1797104199612235776
author Andrieu, C
de Freitas, N
Doucet, A
author_facet Andrieu, C
de Freitas, N
Doucet, A
author_sort Andrieu, C
collection OXFORD
description We propose a novel reversible jump Markov chain Monte Carlo (MCMC) simulated annealing algorithm to optimize radial basis function (RBF) networks. This algorithm enables us to maximize the joint posterior distribution of the network parameters and the number of basis functions. It performs a global search in the joint space of the parameters and number of parameters, thereby surmounting the problem of local minima. We also show that by calibrating a Bayesian model, we can obtain the classical AIC, BIC and MDL model selection criteria within a penalized likelihood framework. Finally, we show theoretically and empirically that the algorithm converges to the modes of the full posterior distribution in an efficient way.
first_indexed 2024-03-07T06:30:31Z
format Conference item
id oxford-uuid:f5d3e741-d2f3-4a00-ae69-85bd94ddd0c2
institution University of Oxford
last_indexed 2024-03-07T06:30:31Z
publishDate 2000
publisher Morgan Kaufmann
record_format dspace
spelling oxford-uuid:f5d3e741-d2f3-4a00-ae69-85bd94ddd0c22022-03-27T12:30:19ZReversible Jump MCMC Simulated Annealing for Neural NetworksConference itemhttp://purl.org/coar/resource_type/c_5794uuid:f5d3e741-d2f3-4a00-ae69-85bd94ddd0c2Department of Computer ScienceMorgan Kaufmann2000Andrieu, Cde Freitas, NDoucet, AWe propose a novel reversible jump Markov chain Monte Carlo (MCMC) simulated annealing algorithm to optimize radial basis function (RBF) networks. This algorithm enables us to maximize the joint posterior distribution of the network parameters and the number of basis functions. It performs a global search in the joint space of the parameters and number of parameters, thereby surmounting the problem of local minima. We also show that by calibrating a Bayesian model, we can obtain the classical AIC, BIC and MDL model selection criteria within a penalized likelihood framework. Finally, we show theoretically and empirically that the algorithm converges to the modes of the full posterior distribution in an efficient way.
spellingShingle Andrieu, C
de Freitas, N
Doucet, A
Reversible Jump MCMC Simulated Annealing for Neural Networks
title Reversible Jump MCMC Simulated Annealing for Neural Networks
title_full Reversible Jump MCMC Simulated Annealing for Neural Networks
title_fullStr Reversible Jump MCMC Simulated Annealing for Neural Networks
title_full_unstemmed Reversible Jump MCMC Simulated Annealing for Neural Networks
title_short Reversible Jump MCMC Simulated Annealing for Neural Networks
title_sort reversible jump mcmc simulated annealing for neural networks
work_keys_str_mv AT andrieuc reversiblejumpmcmcsimulatedannealingforneuralnetworks
AT defreitasn reversiblejumpmcmcsimulatedannealingforneuralnetworks
AT douceta reversiblejumpmcmcsimulatedannealingforneuralnetworks