Reversible Jump MCMC Simulated Annealing for Neural Networks
We propose a novel reversible jump Markov chain Monte Carlo (MCMC) simulated annealing algorithm to optimize radial basis function (RBF) networks. This algorithm enables us to maximize the joint posterior distribution of the network parameters and the number of basis functions. It performs a global...
Hlavní autoři: | Andrieu, C, de Freitas, N, Doucet, A |
---|---|
Médium: | Conference item |
Vydáno: |
Morgan Kaufmann
2000
|
Podobné jednotky
-
Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC
Autor: Andrieu, C, a další
Vydáno: (1999) -
New inference strategies for solving Markov Decision Processes using reversible jump MCMC
Autor: Hoffman, M, a další
Vydáno: (2009) -
New inference strategies for solving Markov Decision Processes using reversible jump MCMC
Autor: Hoffman, M, a další
Vydáno: (2009) -
Sequential MCMC for Bayesian model selection
Autor: Andrieu, C, a další
Vydáno: (1999) -
An Introduction to MCMC for Machine Learning
Autor: Andrieu, C, a další
Vydáno: (2003)