Reversible Jump MCMC Simulated Annealing for Neural Networks
We propose a novel reversible jump Markov chain Monte Carlo (MCMC) simulated annealing algorithm to optimize radial basis function (RBF) networks. This algorithm enables us to maximize the joint posterior distribution of the network parameters and the number of basis functions. It performs a global...
主要な著者: | Andrieu, C, de Freitas, N, Doucet, A |
---|---|
フォーマット: | Conference item |
出版事項: |
Morgan Kaufmann
2000
|
類似資料
-
Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC
著者:: Andrieu, C, 等
出版事項: (1999) -
New inference strategies for solving Markov Decision Processes using reversible jump MCMC
著者:: Hoffman, M, 等
出版事項: (2009) -
New inference strategies for solving Markov Decision Processes using reversible jump MCMC
著者:: Hoffman, M, 等
出版事項: (2009) -
Sequential MCMC for Bayesian model selection
著者:: Andrieu, C, 等
出版事項: (1999) -
An Introduction to MCMC for Machine Learning
著者:: Andrieu, C, 等
出版事項: (2003)