Reversible Jump MCMC Simulated Annealing for Neural Networks
We propose a novel reversible jump Markov chain Monte Carlo (MCMC) simulated annealing algorithm to optimize radial basis function (RBF) networks. This algorithm enables us to maximize the joint posterior distribution of the network parameters and the number of basis functions. It performs a global...
Үндсэн зохиолчид: | Andrieu, C, de Freitas, N, Doucet, A |
---|---|
Формат: | Conference item |
Хэвлэсэн: |
Morgan Kaufmann
2000
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC
-н: Andrieu, C, зэрэг
Хэвлэсэн: (1999) -
New inference strategies for solving Markov Decision Processes using reversible jump MCMC
-н: Hoffman, M, зэрэг
Хэвлэсэн: (2009) -
New inference strategies for solving Markov Decision Processes using reversible jump MCMC
-н: Hoffman, M, зэрэг
Хэвлэсэн: (2009) -
Sequential MCMC for Bayesian model selection
-н: Andrieu, C, зэрэг
Хэвлэсэн: (1999) -
An Introduction to MCMC for Machine Learning
-н: Andrieu, C, зэрэг
Хэвлэсэн: (2003)