Learning to restore multiple image degradations simultaneously
Image corruptions are common in the real world, for example images in the wild may come with unknown blur, bias field, noise, or other kinds of non-linear distributional shifts, thus hampering encoding methods and rendering downstream task unreliable. Image upgradation requires a complicated balance...
Váldodahkkit: | Zhang, L, Bronik, K, Papiez, BW |
---|---|
Materiálatiipa: | Journal article |
Giella: | English |
Almmustuhtton: |
Elsevier
2022
|
Geahča maid
-
DiffuSeg: domain-driven diffusion for medical image segmentation
Dahkki: Zhang, L, et al.
Almmustuhtton: (2025) -
Image restoration via simultaneous nonlocal self-similarity priors
Dahkki: Zha, Zhiyuan, et al.
Almmustuhtton: (2022) -
Deep learning for image processing and restoration
Dahkki: Zhang, Heyi
Almmustuhtton: (2024) -
Deep learning classification of cardiomegaly using combined imaging and non-imaging ICU data
Dahkki: Grant, D, et al.
Almmustuhtton: (2021) -
Deep learning for image processing and restoration
Dahkki: Le, Ky Nam
Almmustuhtton: (2023)