Novel integrated mechanical biological chemical treatment (MBCT) systems for the production of levulinic acid from fraction of municipal solid waste: a comprehensive techno-economic analysis

This paper, for the first time, reports integrated conceptual MBCT/biorefinery systems for unlocking the value of organics in municipal solid waste (MSW) through the production of levulinic acid (LA by 5 wt%) that increases the economic margin by 110–150%. After mechanical separation recovering recy...

Full description

Bibliographic Details
Main Authors: Sadhukhan, J, Ng, KS, Martinez-Hernandez, E
Format: Journal article
Language:English
Published: Elsevier 2016
_version_ 1797104269180010496
author Sadhukhan, J
Ng, KS
Martinez-Hernandez, E
author_facet Sadhukhan, J
Ng, KS
Martinez-Hernandez, E
author_sort Sadhukhan, J
collection OXFORD
description This paper, for the first time, reports integrated conceptual MBCT/biorefinery systems for unlocking the value of organics in municipal solid waste (MSW) through the production of levulinic acid (LA by 5 wt%) that increases the economic margin by 110–150%. After mechanical separation recovering recyclables, metals (iron, aluminium, copper) and refuse derived fuel (RDF), lignocelluloses from remaining MSW are extracted by supercritical-water for chemical valorisation, comprising hydrolysis in 2 wt% dilute H2SO4 catalyst producing LA, furfural, formic acid (FA), via C5/C6 sugar extraction, in plug flow (210–230 °C, 25 bar, 12 s) and continuous stirred tank (195–215 °C, 14 bar, 20 min) reactors; char separation and LA extraction/purification by methyl isobutyl ketone solvent; acid/solvent and by-product recovery. The by-product and pulping effluents are anaerobically digested into biogas and fertiliser. Produced biogas (6.4 MWh/t), RDF (5.4 MWh/t), char (4.5 MWh/t) are combusted, heat recovered into steam generation in boiler (efficiency: 80%); on-site heat/steam demand is met; balance of steam is expanded into electricity in steam turbines (efficiency: 35%).
first_indexed 2024-03-07T06:31:32Z
format Journal article
id oxford-uuid:f6269c22-54bb-497e-8609-466b8d09e120
institution University of Oxford
language English
last_indexed 2024-03-07T06:31:32Z
publishDate 2016
publisher Elsevier
record_format dspace
spelling oxford-uuid:f6269c22-54bb-497e-8609-466b8d09e1202022-03-27T12:32:54ZNovel integrated mechanical biological chemical treatment (MBCT) systems for the production of levulinic acid from fraction of municipal solid waste: a comprehensive techno-economic analysisJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:f6269c22-54bb-497e-8609-466b8d09e120EnglishSymplectic Elements at OxfordElsevier2016Sadhukhan, JNg, KSMartinez-Hernandez, EThis paper, for the first time, reports integrated conceptual MBCT/biorefinery systems for unlocking the value of organics in municipal solid waste (MSW) through the production of levulinic acid (LA by 5 wt%) that increases the economic margin by 110–150%. After mechanical separation recovering recyclables, metals (iron, aluminium, copper) and refuse derived fuel (RDF), lignocelluloses from remaining MSW are extracted by supercritical-water for chemical valorisation, comprising hydrolysis in 2 wt% dilute H2SO4 catalyst producing LA, furfural, formic acid (FA), via C5/C6 sugar extraction, in plug flow (210–230 °C, 25 bar, 12 s) and continuous stirred tank (195–215 °C, 14 bar, 20 min) reactors; char separation and LA extraction/purification by methyl isobutyl ketone solvent; acid/solvent and by-product recovery. The by-product and pulping effluents are anaerobically digested into biogas and fertiliser. Produced biogas (6.4 MWh/t), RDF (5.4 MWh/t), char (4.5 MWh/t) are combusted, heat recovered into steam generation in boiler (efficiency: 80%); on-site heat/steam demand is met; balance of steam is expanded into electricity in steam turbines (efficiency: 35%).
spellingShingle Sadhukhan, J
Ng, KS
Martinez-Hernandez, E
Novel integrated mechanical biological chemical treatment (MBCT) systems for the production of levulinic acid from fraction of municipal solid waste: a comprehensive techno-economic analysis
title Novel integrated mechanical biological chemical treatment (MBCT) systems for the production of levulinic acid from fraction of municipal solid waste: a comprehensive techno-economic analysis
title_full Novel integrated mechanical biological chemical treatment (MBCT) systems for the production of levulinic acid from fraction of municipal solid waste: a comprehensive techno-economic analysis
title_fullStr Novel integrated mechanical biological chemical treatment (MBCT) systems for the production of levulinic acid from fraction of municipal solid waste: a comprehensive techno-economic analysis
title_full_unstemmed Novel integrated mechanical biological chemical treatment (MBCT) systems for the production of levulinic acid from fraction of municipal solid waste: a comprehensive techno-economic analysis
title_short Novel integrated mechanical biological chemical treatment (MBCT) systems for the production of levulinic acid from fraction of municipal solid waste: a comprehensive techno-economic analysis
title_sort novel integrated mechanical biological chemical treatment mbct systems for the production of levulinic acid from fraction of municipal solid waste a comprehensive techno economic analysis
work_keys_str_mv AT sadhukhanj novelintegratedmechanicalbiologicalchemicaltreatmentmbctsystemsfortheproductionoflevulinicacidfromfractionofmunicipalsolidwasteacomprehensivetechnoeconomicanalysis
AT ngks novelintegratedmechanicalbiologicalchemicaltreatmentmbctsystemsfortheproductionoflevulinicacidfromfractionofmunicipalsolidwasteacomprehensivetechnoeconomicanalysis
AT martinezhernandeze novelintegratedmechanicalbiologicalchemicaltreatmentmbctsystemsfortheproductionoflevulinicacidfromfractionofmunicipalsolidwasteacomprehensivetechnoeconomicanalysis