Tag-Aware Personalized Recommendation Using a Deep-Semantic Similarity Model with Negative Sampling
With the rapid growth of social tagging systems, many efforts have been put on tag-aware personalized recommendation. However, due to uncontrolled vocabularies, social tags are usually redundant, sparse, and ambiguous. In this paper, we propose a deep neural network approach to solve this problem by...
Главные авторы: | Xu, Z, Chen, C, Lukasiewicz, T, Miao, Y, Meng, X |
---|---|
Формат: | Conference item |
Опубликовано: |
Association for Computing Machinery
2016
|
Схожие документы
-
Hybrid deep-semantic matrix factorization for tag-aware personalized recommendation
по: Xu, Z, и др.
Опубликовано: (2020) -
Tag-Aware Personalized Recommendation Using a Hybrid Deep Model
по: Xu, Z, и др.
Опубликовано: (2017) -
Location-aware personalized news recommendation with deep semantic analysis
по: Chen, C, и др.
Опубликовано: (2017) -
Lightweight tag-aware personalized recommendation on the social web using ontological similarity
по: Xu, Z, и др.
Опубликовано: (2018) -
Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity
по: Zhenghua Xu, и др.
Опубликовано: (2018-01-01)