Self-organizing continuous attractor networks and motor function.

Motor skill learning may involve training a neural system to automatically perform sequences of movements, with the training signals provided by a different system, used mainly during training to perform the movements, that operates under visual sensory guidance. We use a dynamical systems perspecti...

Descripción completa

Detalles Bibliográficos
Autores principales: Stringer, S, Rolls, E, Trappenberg, T, de Araujo, I
Formato: Journal article
Lenguaje:English
Publicado: 2003
_version_ 1826305426561433600
author Stringer, S
Rolls, E
Trappenberg, T
de Araujo, I
author_facet Stringer, S
Rolls, E
Trappenberg, T
de Araujo, I
author_sort Stringer, S
collection OXFORD
description Motor skill learning may involve training a neural system to automatically perform sequences of movements, with the training signals provided by a different system, used mainly during training to perform the movements, that operates under visual sensory guidance. We use a dynamical systems perspective to show how complex motor sequences could be learned by the automatic system. The network uses a continuous attractor network architecture to perform path integration on an efference copy of the motor signal to keep track of the current state, and selection of which motor cells to activate by a movement selector input where the selection depends on the current state being represented in the continuous attractor network. After training, the correct motor sequence may be selected automatically by a single movement selection signal. A feature of the model presented is the use of 'trace' learning rules which incorporate a form of temporal average of recent cell activity. This form of temporal learning underlies the ability of the networks to learn temporal sequences of behaviour. We show that the continuous attractor network models developed here are able to demonstrate the key features of motor function. That is, (i) the movement can occur at arbitrary speeds; (ii) the movement can occur with arbitrary force; (iii) the agent spends the same relative proportions of its time in each part of the motor sequence; (iv) the agent applies the same relative force in each part of the motor sequence; and (v) the actions always occur in the same sequence.
first_indexed 2024-03-07T06:32:42Z
format Journal article
id oxford-uuid:f68f00b8-0dd9-4c5f-8e64-d73b48f183f5
institution University of Oxford
language English
last_indexed 2024-03-07T06:32:42Z
publishDate 2003
record_format dspace
spelling oxford-uuid:f68f00b8-0dd9-4c5f-8e64-d73b48f183f52022-03-27T12:35:52ZSelf-organizing continuous attractor networks and motor function.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:f68f00b8-0dd9-4c5f-8e64-d73b48f183f5EnglishSymplectic Elements at Oxford2003Stringer, SRolls, ETrappenberg, Tde Araujo, IMotor skill learning may involve training a neural system to automatically perform sequences of movements, with the training signals provided by a different system, used mainly during training to perform the movements, that operates under visual sensory guidance. We use a dynamical systems perspective to show how complex motor sequences could be learned by the automatic system. The network uses a continuous attractor network architecture to perform path integration on an efference copy of the motor signal to keep track of the current state, and selection of which motor cells to activate by a movement selector input where the selection depends on the current state being represented in the continuous attractor network. After training, the correct motor sequence may be selected automatically by a single movement selection signal. A feature of the model presented is the use of 'trace' learning rules which incorporate a form of temporal average of recent cell activity. This form of temporal learning underlies the ability of the networks to learn temporal sequences of behaviour. We show that the continuous attractor network models developed here are able to demonstrate the key features of motor function. That is, (i) the movement can occur at arbitrary speeds; (ii) the movement can occur with arbitrary force; (iii) the agent spends the same relative proportions of its time in each part of the motor sequence; (iv) the agent applies the same relative force in each part of the motor sequence; and (v) the actions always occur in the same sequence.
spellingShingle Stringer, S
Rolls, E
Trappenberg, T
de Araujo, I
Self-organizing continuous attractor networks and motor function.
title Self-organizing continuous attractor networks and motor function.
title_full Self-organizing continuous attractor networks and motor function.
title_fullStr Self-organizing continuous attractor networks and motor function.
title_full_unstemmed Self-organizing continuous attractor networks and motor function.
title_short Self-organizing continuous attractor networks and motor function.
title_sort self organizing continuous attractor networks and motor function
work_keys_str_mv AT stringers selforganizingcontinuousattractornetworksandmotorfunction
AT rollse selforganizingcontinuousattractornetworksandmotorfunction
AT trappenbergt selforganizingcontinuousattractornetworksandmotorfunction
AT dearaujoi selforganizingcontinuousattractornetworksandmotorfunction