Proof of the Kalai-Meshulam conjecture
<p>Let <em>G</em> be a graph, and let <em>f</em><sub><em>G</em></sub> be the sum of (−1)<sup>∣<em>A</em>∣</sup>, over all stable sets <em>A.</em> ...
Main Authors: | , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Springer
2020
|
_version_ | 1826305427198967808 |
---|---|
author | Chudnovsky, M Scott, A Seymour, P Spirkl, S |
author_facet | Chudnovsky, M Scott, A Seymour, P Spirkl, S |
author_sort | Chudnovsky, M |
collection | OXFORD |
description | <p>Let <em>G</em> be a graph, and let <em>f</em><sub><em>G</em></sub> be the sum of (−1)<sup>∣<em>A</em>∣</sup>, over all stable sets <em>A.</em> If <em>G</em> is a cycle with length divisible by three, then <em>f</em><sub><em>G</em></sub> = ±2. Motivated by topological considerations, G. Kalai and R. Meshulam [8] made the conjecture that, if no induced cycle of a graph <em>G</em> has length divisible by three, then ∣<em>f</em><sub><em>G</em></sub>∣ ≤ 1. We prove this conjecture.</p> |
first_indexed | 2024-03-07T06:32:43Z |
format | Journal article |
id | oxford-uuid:f68f6941-dcc6-4b37-975d-d218c5aa34af |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T06:32:43Z |
publishDate | 2020 |
publisher | Springer |
record_format | dspace |
spelling | oxford-uuid:f68f6941-dcc6-4b37-975d-d218c5aa34af2022-03-27T12:35:58ZProof of the Kalai-Meshulam conjectureJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:f68f6941-dcc6-4b37-975d-d218c5aa34afEnglishSymplectic Elements at OxfordSpringer2020Chudnovsky, MScott, ASeymour, PSpirkl, S<p>Let <em>G</em> be a graph, and let <em>f</em><sub><em>G</em></sub> be the sum of (−1)<sup>∣<em>A</em>∣</sup>, over all stable sets <em>A.</em> If <em>G</em> is a cycle with length divisible by three, then <em>f</em><sub><em>G</em></sub> = ±2. Motivated by topological considerations, G. Kalai and R. Meshulam [8] made the conjecture that, if no induced cycle of a graph <em>G</em> has length divisible by three, then ∣<em>f</em><sub><em>G</em></sub>∣ ≤ 1. We prove this conjecture.</p> |
spellingShingle | Chudnovsky, M Scott, A Seymour, P Spirkl, S Proof of the Kalai-Meshulam conjecture |
title | Proof of the Kalai-Meshulam conjecture |
title_full | Proof of the Kalai-Meshulam conjecture |
title_fullStr | Proof of the Kalai-Meshulam conjecture |
title_full_unstemmed | Proof of the Kalai-Meshulam conjecture |
title_short | Proof of the Kalai-Meshulam conjecture |
title_sort | proof of the kalai meshulam conjecture |
work_keys_str_mv | AT chudnovskym proofofthekalaimeshulamconjecture AT scotta proofofthekalaimeshulamconjecture AT seymourp proofofthekalaimeshulamconjecture AT spirkls proofofthekalaimeshulamconjecture |