Proof of the Kalai-Meshulam conjecture

<p>Let&nbsp;<em>G</em>&nbsp;be a graph, and let&nbsp;<em>f</em><sub><em>G</em></sub>&nbsp;be the sum of (&minus;1)<sup>∣<em>A</em>∣</sup>, over all stable sets&nbsp;<em>A.</em>&nbsp;...

Full description

Bibliographic Details
Main Authors: Chudnovsky, M, Scott, A, Seymour, P, Spirkl, S
Format: Journal article
Language:English
Published: Springer 2020
_version_ 1826305427198967808
author Chudnovsky, M
Scott, A
Seymour, P
Spirkl, S
author_facet Chudnovsky, M
Scott, A
Seymour, P
Spirkl, S
author_sort Chudnovsky, M
collection OXFORD
description <p>Let&nbsp;<em>G</em>&nbsp;be a graph, and let&nbsp;<em>f</em><sub><em>G</em></sub>&nbsp;be the sum of (&minus;1)<sup>∣<em>A</em>∣</sup>, over all stable sets&nbsp;<em>A.</em>&nbsp;If&nbsp;<em>G</em>&nbsp;is a cycle with length divisible by three, then&nbsp;<em>f</em><sub><em>G</em></sub>&nbsp;= &plusmn;2. Motivated by topological considerations, G. Kalai and R. Meshulam [8] made the conjecture that, if no induced cycle of a graph&nbsp;<em>G</em>&nbsp;has length divisible by three, then ∣<em>f</em><sub><em>G</em></sub>∣ &le; 1. We prove this conjecture.</p>
first_indexed 2024-03-07T06:32:43Z
format Journal article
id oxford-uuid:f68f6941-dcc6-4b37-975d-d218c5aa34af
institution University of Oxford
language English
last_indexed 2024-03-07T06:32:43Z
publishDate 2020
publisher Springer
record_format dspace
spelling oxford-uuid:f68f6941-dcc6-4b37-975d-d218c5aa34af2022-03-27T12:35:58ZProof of the Kalai-Meshulam conjectureJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:f68f6941-dcc6-4b37-975d-d218c5aa34afEnglishSymplectic Elements at OxfordSpringer2020Chudnovsky, MScott, ASeymour, PSpirkl, S<p>Let&nbsp;<em>G</em>&nbsp;be a graph, and let&nbsp;<em>f</em><sub><em>G</em></sub>&nbsp;be the sum of (&minus;1)<sup>∣<em>A</em>∣</sup>, over all stable sets&nbsp;<em>A.</em>&nbsp;If&nbsp;<em>G</em>&nbsp;is a cycle with length divisible by three, then&nbsp;<em>f</em><sub><em>G</em></sub>&nbsp;= &plusmn;2. Motivated by topological considerations, G. Kalai and R. Meshulam [8] made the conjecture that, if no induced cycle of a graph&nbsp;<em>G</em>&nbsp;has length divisible by three, then ∣<em>f</em><sub><em>G</em></sub>∣ &le; 1. We prove this conjecture.</p>
spellingShingle Chudnovsky, M
Scott, A
Seymour, P
Spirkl, S
Proof of the Kalai-Meshulam conjecture
title Proof of the Kalai-Meshulam conjecture
title_full Proof of the Kalai-Meshulam conjecture
title_fullStr Proof of the Kalai-Meshulam conjecture
title_full_unstemmed Proof of the Kalai-Meshulam conjecture
title_short Proof of the Kalai-Meshulam conjecture
title_sort proof of the kalai meshulam conjecture
work_keys_str_mv AT chudnovskym proofofthekalaimeshulamconjecture
AT scotta proofofthekalaimeshulamconjecture
AT seymourp proofofthekalaimeshulamconjecture
AT spirkls proofofthekalaimeshulamconjecture