Dessins d’enfants, Seiberg-Witten curves and conformal blocks
We show how to map Grothendieck’s dessins d’enfants to algebraic curves as Seiberg-Witten curves, then use the mirror map and the AGT map to obtain the corresponding 4d N = 2 supersymmetric instanton partition functions and 2d Virasoro conformal blocks. We explicitly demonstrate the 6 trivalent dess...
Main Authors: | Bao, J, Foda, O, He, Y-H, Hirst, E, Read, J, Xiao, Y, Yagi, F |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Springer
2021
|
Similar Items
-
The grothendieck theory of dessins d'enfants /
by: Schneps, Leila
Published: (1994) -
Seiberg-Witten curves with O7 ± -planes
by: Hirotaka Hayashi, et al.
Published: (2023-11-01) -
On W-operators and superintegrability for dessins d’enfant
by: Alexander Alexandrov
Published: (2023-02-01) -
On the quantization of Seiberg-Witten geometry
by: Haouzi, N, et al.
Published: (2021) -
Notes on Seiberg-Witten theory /
by: 198695 Nicolaescu, Liviu I.
Published: (2000)