Representations of the quadratic algebra and partially asymmetric diffusion with open boundaries
We consider the one-dimensional partially asymmetric exclusion model with open boundaries. The model describes a system of hard-core particles that hop stochastically in both directions with different rates. At both boundaries particles are injected and extracted. By means of the method of Derrida e...
Auteurs principaux: | Essler, F, Rittenberg, V |
---|---|
Format: | Journal article |
Publié: |
1996
|
Documents similaires
-
Slowest relaxation mode of the partially asymmetric exclusion process with open boundaries
par: de Gier, J, et autres
Publié: (2008) -
Exact spectral gaps of the asymmetric exclusion process with open boundaries
par: de Gier, J, et autres
Publié: (2006) -
Bethe ansatz solution of the asymmetric exclusion process with open boundaries.
par: de Gier, J, et autres
Publié: (2005) -
Exact solution of a partially asymmetric exclusion model using a deformed oscillator algebra
par: Blythe, R, et autres
Publié: (2000) -
Representations of quadratic Heisenberg-Weyl algebras and polynomials in the fourth Painlevé transcendent
par: Ian Marquette
Publié: (2024-09-01)