Unsupervised pattern and outlier detection for pedestrian trajectories using diffusion maps
The movement of pedestrian crowds is studied both for real-world applications and to gain fundamental scientific insights into systems of self-driven particles. Trajectory data describes the dynamics of pedestrian crowds at the level of individual movement paths. Analysing such data is a central cha...
Päätekijät: | Zeng, F, Bode, N, Gross, T, Homer, M |
---|---|
Aineistotyyppi: | Journal article |
Kieli: | English |
Julkaistu: |
Elsevier
2023
|
Samankaltaisia teoksia
-
Unsupervised outlier detection in multidimensional data
Tekijä: Atiq ur Rehman, et al.
Julkaistu: (2021-06-01) -
Unsupervised Outlier Detection in IOT Using Deep VAE
Tekijä: Walaa Gouda, et al.
Julkaistu: (2022-09-01) -
Trajectory Outlier Detection on Trajectory Data Streams
Tekijä: Keyan Cao, et al.
Julkaistu: (2020-01-01) -
Unsupervised Outlier Profile Analysis
Tekijä: Debashis Ghosh, et al.
Julkaistu: (2014-10-01) -
Unsupervised Outlier Profile Analysis
Tekijä: Debashis Ghosh, et al.
Julkaistu: (2014-01-01)