The quadratic isoperimetric inequality for mapping tori of free group automorphisms II: The general case
If F is a finitely generated free group and ϕ is an automorphism of F then the mapping torus of ϕ admits a quadratic isoperimetric inequality. This is the third and final paper in a series proving this theorem. The first two were math.GR/0211459 and math.GR/0507589.
Hlavní autoři: | Bridson, M, Groves, D |
---|---|
Médium: | Journal article |
Vydáno: |
American Mathematical Society
2009
|
Podobné jednotky
-
The quadratic isoperimetric inequality for mapping tori of free group
automorphisms II: The general case
Autor: Bridson, M, a další
Vydáno: (2006) -
The quadratic isoperimetric inequality for mapping tori of free group automorphisms
Autor: Bridson, M, a další
Vydáno: (2010) -
The quadratic isoperimetric inequality for mapping tori of free group
automorphisms
Autor: Bridson, M, a další
Vydáno: (2008) -
Doubles, finiteness properties of groups, and quadratic isoperimetric inequalities
Autor: Bridson, M
Vydáno: (1999) -
OPTIMAL ISOPERIMETRIC-INEQUALITIES FOR ABELIAN-BY-FREE GROUPS
Autor: Bridson, M
Vydáno: (1995)