Exploration and value function factorisation in single and multi-agent reinforcement learning

<p>The ability to learn from data is crucial in developing satisfactory solutions to many complex problems. In particular, in the design of intelligent agents that exist and interact with a complex environment in the pursuit of some goal. In this thesis we investigate some bottlenecks that can...

Full beskrivning

Bibliografiska uppgifter
Huvudupphovsman: Rashid, T
Övriga upphovsmän: Whiteson, S
Materialtyp: Lärdomsprov
Språk:English
Publicerad: 2021
Ämnen: