Exploration and value function factorisation in single and multi-agent reinforcement learning
<p>The ability to learn from data is crucial in developing satisfactory solutions to many complex problems. In particular, in the design of intelligent agents that exist and interact with a complex environment in the pursuit of some goal. In this thesis we investigate some bottlenecks that can...
1. Verfasser: | Rashid, T |
---|---|
Weitere Verfasser: | Whiteson, S |
Format: | Abschlussarbeit |
Sprache: | English |
Veröffentlicht: |
2021
|
Schlagworte: |
Ähnliche Einträge
Ähnliche Einträge
-
Monotonic value function factorisation for deep multi-agent reinforcement learning
von: Rashid, T, et al.
Veröffentlicht: (2020) -
QMIX: Monotonic value function factorisation for deep multi-agent reinforcement learning
von: Rashid, T, et al.
Veröffentlicht: (2018) -
Weighted QMIX: Expanding monotonic value function factorisation for deep multi−agent reinforcement learning
von: Rashid, T, et al.
Veröffentlicht: (2020) -
Rethinking Exploration and Experience Exploitation in Value-Based Multi-Agent Reinforcement Learning
von: Anatolii Borzilov, et al.
Veröffentlicht: (2025-01-01) -
Reinforcement Learning with Value Function Decomposition for Hierarchical Multi-Agent Consensus Control
von: Xiaoxia Zhu
Veröffentlicht: (2024-09-01)