Exploration and value function factorisation in single and multi-agent reinforcement learning
<p>The ability to learn from data is crucial in developing satisfactory solutions to many complex problems. In particular, in the design of intelligent agents that exist and interact with a complex environment in the pursuit of some goal. In this thesis we investigate some bottlenecks that can...
Autore principale: | Rashid, T |
---|---|
Altri autori: | Whiteson, S |
Natura: | Tesi |
Lingua: | English |
Pubblicazione: |
2021
|
Soggetti: |
Documenti analoghi
Documenti analoghi
-
Monotonic value function factorisation for deep multi-agent reinforcement learning
di: Rashid, T, et al.
Pubblicazione: (2020) -
QMIX: Monotonic value function factorisation for deep multi-agent reinforcement learning
di: Rashid, T, et al.
Pubblicazione: (2018) -
Weighted QMIX: Expanding monotonic value function factorisation for deep multi−agent reinforcement learning
di: Rashid, T, et al.
Pubblicazione: (2020) -
Rethinking Exploration and Experience Exploitation in Value-Based Multi-Agent Reinforcement Learning
di: Anatolii Borzilov, et al.
Pubblicazione: (2025-01-01) -
Reinforcement Learning with Value Function Decomposition for Hierarchical Multi-Agent Consensus Control
di: Xiaoxia Zhu
Pubblicazione: (2024-09-01)