Exploration and value function factorisation in single and multi-agent reinforcement learning
<p>The ability to learn from data is crucial in developing satisfactory solutions to many complex problems. In particular, in the design of intelligent agents that exist and interact with a complex environment in the pursuit of some goal. In this thesis we investigate some bottlenecks that can...
Huvudupphovsman: | Rashid, T |
---|---|
Övriga upphovsmän: | Whiteson, S |
Materialtyp: | Lärdomsprov |
Språk: | English |
Publicerad: |
2021
|
Ämnen: |
Liknande verk
Liknande verk
-
Monotonic value function factorisation for deep multi-agent reinforcement learning
av: Rashid, T, et al.
Publicerad: (2020) -
QMIX: Monotonic value function factorisation for deep multi-agent reinforcement learning
av: Rashid, T, et al.
Publicerad: (2018) -
Weighted QMIX: Expanding monotonic value function factorisation for deep multi−agent reinforcement learning
av: Rashid, T, et al.
Publicerad: (2020) -
Rethinking Exploration and Experience Exploitation in Value-Based Multi-Agent Reinforcement Learning
av: Anatolii Borzilov, et al.
Publicerad: (2025-01-01) -
Reinforcement Learning with Value Function Decomposition for Hierarchical Multi-Agent Consensus Control
av: Xiaoxia Zhu
Publicerad: (2024-09-01)