Multi-task self-supervised visual learning

We investigate methods for combining multiple self-supervised tasks-i.e., supervised tasks where data can be collected without manual labeling-in order to train a single visual representation. First, we provide an apples-to-apples comparison of four different self-supervised tasks using the very dee...

Full description

Bibliographic Details
Main Authors: Doersch, C, Zisserman, A
Format: Conference item
Published: IEEE Explore 2017
Description
Summary:We investigate methods for combining multiple self-supervised tasks-i.e., supervised tasks where data can be collected without manual labeling-in order to train a single visual representation. First, we provide an apples-to-apples comparison of four different self-supervised tasks using the very deep ResNet-101 architecture. We then combine tasks to jointly train a network. We also explore lasso regularization to encourage the network to factorize the information in its representation, and methods for “harmonizing” network inputs in order to learn a more unified representation. We evaluate all methods on ImageNet classification, PASCAL VOC detection, and NYU depth prediction. Our results show that deeper networks work better, and that combining tasks-even via a näýve multihead architecture-always improves performance. Our best joint network nearly matches the PASCAL performance of a model pre-trained on ImageNet classification, and matches the ImageNet network on NYU depth prediction.