Multi-task self-supervised visual learning

We investigate methods for combining multiple self-supervised tasks-i.e., supervised tasks where data can be collected without manual labeling-in order to train a single visual representation. First, we provide an apples-to-apples comparison of four different self-supervised tasks using the very dee...

全面介绍

书目详细资料
Main Authors: Doersch, C, Zisserman, A
格式: Conference item
出版: IEEE Explore 2017