Three representations of the fractional p-Laplacian: Semigroup, extension and Balakrishnan formulas
<p>We introduce three representation formulas for the fractional p-Laplace operator in the whole range of parameters 0 < s < 1 and 1 < p < ∞. Note that for p ≠ 2 this a nonlinear operator. The first representation is based on a splitting procedure that combines a renormalized nonli...
Autors principals: | del Teso, F, Gómez-Castro, D, Vázquez, JL |
---|---|
Format: | Journal article |
Idioma: | English |
Publicat: |
De Gruyter
2021
|
Ítems similars
-
Extensions of isometric dual representations of semigroups
per: Batty, C, et al.
Publicat: (1996) -
Prof. C. Balakrishnan
per: Lakshmi Saleem Dr.
Publicat: (2009-10-01) -
On the extensions of infinite-dimensional representations of Lie semigroups
per: Adolf R. Mirotin
Publicat: (2002-01-01) -
The Semigroup and the Inverse of the Laplacian on the Heisenberg Group
per: APARAJITA DASGUPTA, et al.
Publicat: (2010-01-01) -
Preface: In Memory of A.V. Balakrishnan
per: Bensoussan, Alain, et al.
Publicat: (2016)