Short-term behavioural impact contrasts with long-term fitness consequences of biologging in a long-lived seabird

Biologging has emerged as one of the most powerful and widely used technologies in ethology and ecology, providing unprecedented insight into animal behaviour. However, attaching loggers to animals may alter their behaviour, leading to the collection of data that fails to represent natural activity...

Full description

Bibliographic Details
Main Authors: Gillies, N, Fayet, A, Padget, O, Syposz, M, Wynn, J, Bond, S, Evry, J, Kirk, H, Shoji, A, Dean, B, Freeman, R, Guilford, T
Format: Journal article
Language:English
Published: Nature Research (part of Springer Nature) 2020
_version_ 1826305782391504896
author Gillies, N
Fayet, A
Padget, O
Syposz, M
Wynn, J
Bond, S
Evry, J
Kirk, H
Shoji, A
Dean, B
Freeman, R
Guilford, T
author_facet Gillies, N
Fayet, A
Padget, O
Syposz, M
Wynn, J
Bond, S
Evry, J
Kirk, H
Shoji, A
Dean, B
Freeman, R
Guilford, T
author_sort Gillies, N
collection OXFORD
description Biologging has emerged as one of the most powerful and widely used technologies in ethology and ecology, providing unprecedented insight into animal behaviour. However, attaching loggers to animals may alter their behaviour, leading to the collection of data that fails to represent natural activity accurately. This is of particular concern in free-ranging animals, where tagged individuals can rarely be monitored directly. One of the most commonly reported measures of impact is breeding success, but this ignores potential short-term alterations to individual behaviour. When collecting ecological or behavioural data, such changes can have important consequences for the inference of results. Here, we take a multifaceted approach to investigate whether tagging leads to short-term behavioural changes, and whether these are later reflected in breeding performance, in a pelagic seabird. We analyse a long-term dataset of tracking data from Manx shearwaters (Puffinus puffinus), comparing the effects of carrying no device, small geolocator (GLS) devices (0.6% body mass), large Global Positioning System (GPS) devices (4.2% body mass) and a combination of the two (4.8% body mass). Despite exhibiting normal breeding success in both the year of tagging and the following year, incubating birds carrying GPS devices altered their foraging behaviour compared to untagged birds. During their foraging trips, GPS-tagged birds doubled their time away from the nest, experienced reduced foraging gains (64% reduction in mass gained per day) and reduced flight time by 14%. These findings demonstrate that the perceived impacts of device deployment depends on the scale over which they are sought: long-term measures, such as breeding success, can obscure finer-scale behavioural change, potentially limiting the validity of using GPS to infer at-sea behaviour when answering behavioural or ecological questions.
first_indexed 2024-03-07T06:38:03Z
format Journal article
id oxford-uuid:f8555c78-dc24-4b21-82be-39b6c8d90d42
institution University of Oxford
language English
last_indexed 2024-03-07T06:38:03Z
publishDate 2020
publisher Nature Research (part of Springer Nature)
record_format dspace
spelling oxford-uuid:f8555c78-dc24-4b21-82be-39b6c8d90d422022-03-27T12:49:28ZShort-term behavioural impact contrasts with long-term fitness consequences of biologging in a long-lived seabirdJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:f8555c78-dc24-4b21-82be-39b6c8d90d42EnglishSymplectic ElementsNature Research (part of Springer Nature)2020Gillies, NFayet, APadget, OSyposz, MWynn, JBond, SEvry, JKirk, HShoji, ADean, BFreeman, RGuilford, TBiologging has emerged as one of the most powerful and widely used technologies in ethology and ecology, providing unprecedented insight into animal behaviour. However, attaching loggers to animals may alter their behaviour, leading to the collection of data that fails to represent natural activity accurately. This is of particular concern in free-ranging animals, where tagged individuals can rarely be monitored directly. One of the most commonly reported measures of impact is breeding success, but this ignores potential short-term alterations to individual behaviour. When collecting ecological or behavioural data, such changes can have important consequences for the inference of results. Here, we take a multifaceted approach to investigate whether tagging leads to short-term behavioural changes, and whether these are later reflected in breeding performance, in a pelagic seabird. We analyse a long-term dataset of tracking data from Manx shearwaters (Puffinus puffinus), comparing the effects of carrying no device, small geolocator (GLS) devices (0.6% body mass), large Global Positioning System (GPS) devices (4.2% body mass) and a combination of the two (4.8% body mass). Despite exhibiting normal breeding success in both the year of tagging and the following year, incubating birds carrying GPS devices altered their foraging behaviour compared to untagged birds. During their foraging trips, GPS-tagged birds doubled their time away from the nest, experienced reduced foraging gains (64% reduction in mass gained per day) and reduced flight time by 14%. These findings demonstrate that the perceived impacts of device deployment depends on the scale over which they are sought: long-term measures, such as breeding success, can obscure finer-scale behavioural change, potentially limiting the validity of using GPS to infer at-sea behaviour when answering behavioural or ecological questions.
spellingShingle Gillies, N
Fayet, A
Padget, O
Syposz, M
Wynn, J
Bond, S
Evry, J
Kirk, H
Shoji, A
Dean, B
Freeman, R
Guilford, T
Short-term behavioural impact contrasts with long-term fitness consequences of biologging in a long-lived seabird
title Short-term behavioural impact contrasts with long-term fitness consequences of biologging in a long-lived seabird
title_full Short-term behavioural impact contrasts with long-term fitness consequences of biologging in a long-lived seabird
title_fullStr Short-term behavioural impact contrasts with long-term fitness consequences of biologging in a long-lived seabird
title_full_unstemmed Short-term behavioural impact contrasts with long-term fitness consequences of biologging in a long-lived seabird
title_short Short-term behavioural impact contrasts with long-term fitness consequences of biologging in a long-lived seabird
title_sort short term behavioural impact contrasts with long term fitness consequences of biologging in a long lived seabird
work_keys_str_mv AT gilliesn shorttermbehaviouralimpactcontrastswithlongtermfitnessconsequencesofbiologginginalonglivedseabird
AT fayeta shorttermbehaviouralimpactcontrastswithlongtermfitnessconsequencesofbiologginginalonglivedseabird
AT padgeto shorttermbehaviouralimpactcontrastswithlongtermfitnessconsequencesofbiologginginalonglivedseabird
AT syposzm shorttermbehaviouralimpactcontrastswithlongtermfitnessconsequencesofbiologginginalonglivedseabird
AT wynnj shorttermbehaviouralimpactcontrastswithlongtermfitnessconsequencesofbiologginginalonglivedseabird
AT bonds shorttermbehaviouralimpactcontrastswithlongtermfitnessconsequencesofbiologginginalonglivedseabird
AT evryj shorttermbehaviouralimpactcontrastswithlongtermfitnessconsequencesofbiologginginalonglivedseabird
AT kirkh shorttermbehaviouralimpactcontrastswithlongtermfitnessconsequencesofbiologginginalonglivedseabird
AT shojia shorttermbehaviouralimpactcontrastswithlongtermfitnessconsequencesofbiologginginalonglivedseabird
AT deanb shorttermbehaviouralimpactcontrastswithlongtermfitnessconsequencesofbiologginginalonglivedseabird
AT freemanr shorttermbehaviouralimpactcontrastswithlongtermfitnessconsequencesofbiologginginalonglivedseabird
AT guilfordt shorttermbehaviouralimpactcontrastswithlongtermfitnessconsequencesofbiologginginalonglivedseabird