Cooling, gravity, and geometry: Flow-driven massive core formation

We study numerically the formation of molecular clouds in large-scale colliding flows including self-gravity. The models emphasize the competition between the effects of gravity on global and local scales in an isolated cloud. Global gravity builds up large-scale filaments, while local gravity, trig...

Full description

Bibliographic Details
Main Authors: Heitsch, F, Hartmann, L, Slyz, A, Devriendt, J, Burkert, A
Format: Journal article
Language:English
Published: Institute of Physics Publishing 2008
Description
Summary:We study numerically the formation of molecular clouds in large-scale colliding flows including self-gravity. The models emphasize the competition between the effects of gravity on global and local scales in an isolated cloud. Global gravity builds up large-scale filaments, while local gravity, triggered by a combination of strong thermal and dynamical instabilities, causes cores to form. The dynamical instabilities give rise to a local focusing of the colliding flows, facilitating the rapid formation of massive protostellar cores of a few hundred M⊙. The forming clouds do not reach an equilibrium state, although the motions within the clouds appear to be comparable to virial. The self-similar core mass distributions derived from models with and without self-gravity indicate that the core mass distribution is set very early on during the cloud formation process, predominantly by a combination of thermal and dynamical instabilities rather than by self-gravity. © 2008. The American Astronomical Society. All rights reserved.