Towards the genomic sequence code of DNA fragility for machine learning
Genomic DNA breakages and the subsequent insertion and deletion mutations are important contributors to genome instability and linked diseases. Unlike the research in point mutations, the relationship between DNA sequence context and the propensity for strand breaks remains elusive. Here, by analyzi...
Asıl Yazarlar: | Pflughaupt, P, Abdullah, A, Masuda, K, Sahakyan, A |
---|---|
Materyal Türü: | Journal article |
Dil: | English |
Baskı/Yayın Bilgisi: |
Oxford University Press
2024
|
Benzer Materyaller
-
Towards the genomic sequence code of DNA fragility
Yazar:: Pflughaupt, PK
Baskı/Yayın Bilgisi: (2024) -
Quantum mechanical electronic and geometric parameters for DNA k-mers as features for machine learning
Yazar:: Masuda, K, ve diğerleri
Baskı/Yayın Bilgisi: (2024) -
Quantum mechanical electronic and geometric parameters for DNA k-mers as features for machine learning
Yazar:: Kairi Masuda, ve diğerleri
Baskı/Yayın Bilgisi: (2024-08-01) -
Generalised interrelations among mutation rates drive the genomic compliance of Chargaff's second parity rule
Yazar:: Pflughaupt, P, ve diğerleri
Baskı/Yayın Bilgisi: (2023) -
Machine learning model for sequence-driven DNA G-quadruplex formation
Yazar:: Sahakyan, A, ve diğerleri
Baskı/Yayın Bilgisi: (2017)