Fast and accurate randomized algorithms for linear systems and eigenvalue problems
This paper develops a class of algorithms for general linear systems and eigenvalue problems. These algorithms apply fast randomized dimension reduction (``sketching"") to accelerate standard subspace projection methods, such as GMRES and Rayleigh--Ritz. This modification makes it possible...
Asıl Yazarlar: | Nakatsukasa, Y, Tropp, JA |
---|---|
Materyal Türü: | Journal article |
Dil: | English |
Baskı/Yayın Bilgisi: |
Society for Industrial and Applied Mathematics
2024
|
Benzer Materyaller
-
Inertia laws and localization of real eigenvalues for generalized indefinite eigenvalue problems
Yazar:: Nakatsukasa, Y, ve diğerleri
Baskı/Yayın Bilgisi: (2019) -
Rectangular eigenvalue problems
Yazar:: Hashemi, B, ve diğerleri
Baskı/Yayın Bilgisi: (2022) -
Least-squares spectral methods for ODE eigenvalue problems
Yazar:: Hashemi, B, ve diğerleri
Baskı/Yayın Bilgisi: (2022) -
Eigenvalue-based algorithm and analysis for nonconvex QCQP with one constraint
Yazar:: Adachi, S, ve diğerleri
Baskı/Yayın Bilgisi: (2017) -
Solving two-parameter eigenvalue problems using an alternating method
Yazar:: Eisenmann, H, ve diğerleri
Baskı/Yayın Bilgisi: (2022)