Structure Theory of Metric-Measure Spaces with Lower Ricci Curvature Bounds

We prove that a metric measure space $(X,d,m)$ satisfying finite dimensional lower Ricci curvature bounds and whose Sobolev space $W^{1,2}$ is Hilbert is rectifiable. That is, a $RCD^*(K,N)$-space is rectifiable, and in particular for $m$-a.e. point the tangent cone is unique and euclidean of dimens...

詳細記述

書誌詳細
主要な著者: Mondino, A, Naber, A
フォーマット: Journal article
出版事項: European Mathematical Society 2019