Structure Theory of Metric-Measure Spaces with Lower Ricci Curvature Bounds
We prove that a metric measure space $(X,d,m)$ satisfying finite dimensional lower Ricci curvature bounds and whose Sobolev space $W^{1,2}$ is Hilbert is rectifiable. That is, a $RCD^*(K,N)$-space is rectifiable, and in particular for $m$-a.e. point the tangent cone is unique and euclidean of dimens...
Asıl Yazarlar: | Mondino, A, Naber, A |
---|---|
Materyal Türü: | Journal article |
Baskı/Yayın Bilgisi: |
European Mathematical Society
2019
|
Benzer Materyaller
-
Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds
Yazar:: Cavalletti, F, ve diğerleri
Baskı/Yayın Bilgisi: (2016) -
Sharp geometric and functional inequalities in metric measure spaces with lower Ricci curvature bounds
Yazar:: Cavalletti, F, ve diğerleri
Baskı/Yayın Bilgisi: (2017) -
The metric measure boundary of spaces with Ricci curvature bounded below
Yazar:: Brué, E, ve diğerleri
Baskı/Yayın Bilgisi: (2023) -
Measure rigidity of Ricci curvature lower bounds
Yazar:: Cavalletti, F, ve diğerleri
Baskı/Yayın Bilgisi: (2015) -
Weak Laplacian bounds and minimal boundaries in non-smooth spaces with Ricci curvature lower bounds
Yazar:: Mondino, A, ve diğerleri
Baskı/Yayın Bilgisi: (2021)