Structure Theory of Metric-Measure Spaces with Lower Ricci Curvature Bounds

We prove that a metric measure space $(X,d,m)$ satisfying finite dimensional lower Ricci curvature bounds and whose Sobolev space $W^{1,2}$ is Hilbert is rectifiable. That is, a $RCD^*(K,N)$-space is rectifiable, and in particular for $m$-a.e. point the tangent cone is unique and euclidean of dimens...

Ful tanımlama

Detaylı Bibliyografya
Asıl Yazarlar: Mondino, A, Naber, A
Materyal Türü: Journal article
Baskı/Yayın Bilgisi: European Mathematical Society 2019