A shooting argument approach to a sharp type solution for nonlinear degenerate Fisher-KPP equations
In this paper we prove the existence and uniqueness of a travelling-wave solution of sharp type for the degenerate (at u = 0) parabolic equation $u_1 = [D(u)u_x]_x + g(u)$ where D is a strictly increasing function and g is a function which generalizes the kinetic part of the classical Fisher-KPP equ...
المؤلفون الرئيسيون: | , , |
---|---|
التنسيق: | Journal article |
منشور في: |
1996
|
الملخص: | In this paper we prove the existence and uniqueness of a travelling-wave solution of sharp type for the degenerate (at u = 0) parabolic equation $u_1 = [D(u)u_x]_x + g(u)$ where D is a strictly increasing function and g is a function which generalizes the kinetic part of the classical Fisher-KPP equation. The original problem is transformed into the proper travelling-wave variables, and then a shooting argument is used to show the existence of a saddle-saddle heteroclinic trajectory for a critical value, c*>0, of the speed c of an autonomous system of ordinary differential equations. Associated with this connection is a sharp-type solution of the nonlinear partial differential equation. |
---|