A shooting argument approach to a sharp type solution for nonlinear degenerate Fisher-KPP equations
In this paper we prove the existence and uniqueness of a travelling-wave solution of sharp type for the degenerate (at u = 0) parabolic equation $u_1 = [D(u)u_x]_x + g(u)$ where D is a strictly increasing function and g is a function which generalizes the kinetic part of the classical Fisher-KPP equ...
Main Authors: | Sánchez-Garduño, F, Kappos, E, Maini, P |
---|---|
Formato: | Journal article |
Publicado: |
1996
|
Títulos similares
-
A shooting argument approach to a sharp-type solution for nonlinear degenerate Fisher-KPP equations
por: SanchezGarduno, F, et al.
Publicado: (1996) -
Existence and uniqueness of a sharp travelling wave in degenerate non-linear diffusion Fisher-KPP equations
por: Sánchez-Garduño, F, et al.
Publicado: (1994) -
EXISTENCE AND UNIQUENESS OF A SHARP TRAVELING-WAVE IN DEGENERATE NONLINEAR DIFFUSION FISHER-KPP EQUATIONS
por: Sanchezgarduno, F, et al.
Publicado: (1994) -
Time Fractional Fisher–KPP and Fitzhugh–Nagumo Equations
por: Christopher N. Angstmann, et al.
Publicado: (2020-09-01) -
Gradient estimates for the Fisher–KPP equation on Riemannian manifolds
por: Xin Geng, et al.
Publicado: (2018-02-01)