What is the theory ZFC without power set?
We show that the theory ZFC, consisting of the usual axioms of ZFC but with the power set axiom removed—specifically axiomatized by extensionality, foundation, pairing, union, infinity, separation, replacement and the assertion that every set can be well-ordered—is weaker than commonly supposed and...
Hoofdauteurs: | Gitman, V, Hamkins, J, Johnstone, T |
---|---|
Formaat: | Journal article |
Taal: | English |
Gepubliceerd in: |
Wiley
2016
|
Gelijkaardige items
-
ZFC proves that the class of ordinals is not weakly compact for definable classes
door: Enayat, A, et al.
Gepubliceerd in: (2018) -
Small sets in convex geometry and formal independence over ZFC
door: Menachem Kojman
Gepubliceerd in: (2005-01-01) -
Topology and models of ZFC at early Universe
door: Jerzy Król, et al.
Gepubliceerd in: (2019-07-01) -
A Generic Model in Which the Russell-Nontypical Sets Satisfy ZFC Strictly between HOD and the Universe
door: Vladimir Kanovei, et al.
Gepubliceerd in: (2022-02-01) -
Optimization of the Guiding Stability of a Horizontal Axis HTS ZFC Radial Levitation Bearing
door: António J. Arsénio, et al.
Gepubliceerd in: (2021-11-01)