What is the theory ZFC without power set?
We show that the theory ZFC, consisting of the usual axioms of ZFC but with the power set axiom removed—specifically axiomatized by extensionality, foundation, pairing, union, infinity, separation, replacement and the assertion that every set can be well-ordered—is weaker than commonly supposed and...
Hlavní autoři: | Gitman, V, Hamkins, J, Johnstone, T |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Wiley
2016
|
Podobné jednotky
-
ZFC proves that the class of ordinals is not weakly compact for definable classes
Autor: Enayat, A, a další
Vydáno: (2018) -
Small sets in convex geometry and formal independence over ZFC
Autor: Menachem Kojman
Vydáno: (2005-01-01) -
Topology and models of ZFC at early Universe
Autor: Jerzy Król, a další
Vydáno: (2019-07-01) -
A Generic Model in Which the Russell-Nontypical Sets Satisfy ZFC Strictly between HOD and the Universe
Autor: Vladimir Kanovei, a další
Vydáno: (2022-02-01) -
Optimization of the Guiding Stability of a Horizontal Axis HTS ZFC Radial Levitation Bearing
Autor: António J. Arsénio, a další
Vydáno: (2021-11-01)