Non-stabilized nucleophiles in Cu-catalysed dynamic kinetic asymmetric allylic alkylation

The development of new reactions forming asymmetric carbon–carbon bonds has enabled chemists to synthesize a broad range of important carbon-containing molecules, including pharmaceutical agents, fragrances and polymers. Most strategies to obtain enantiomerically enriched molecules rely on either ge...

Celý popis

Podrobná bibliografie
Hlavní autoři: You, H, Rideau, E, Sidera, M, Fletcher, S
Médium: Journal article
Vydáno: Nature Publishing Group 2015
_version_ 1826306617032835072
author You, H
Rideau, E
Sidera, M
Fletcher, S
author_facet You, H
Rideau, E
Sidera, M
Fletcher, S
author_sort You, H
collection OXFORD
description The development of new reactions forming asymmetric carbon–carbon bonds has enabled chemists to synthesize a broad range of important carbon-containing molecules, including pharmaceutical agents, fragrances and polymers. Most strategies to obtain enantiomerically enriched molecules rely on either generating new stereogenic centres from prochiral substrates or resolving racemic mixtures of enantiomers. An alternative strategy—dynamic kinetic asymmetric transformation—involves the transformation of a racemic starting material into a single enantiomer product, with greater than 50 per cent maximum yield2. The use of stabilized nucleophiles (pKa < 25, where Ka is the acid dissociation constant) in palladium-catalysed asymmetric allylic alkylation reactions has proved to be extremely versatile in these processes. Conversely, the use of non-stabilized nucleophiles in such reactions is difficult and remains a key challenge. Here we report a copper-catalysed dynamic kinetic asymmetric transformation using racemic substrates and alkyl nucleophiles. These nucleophiles have a pKa of ≥50, more than 25 orders of magnitude more basic than the nucleophiles that are typically used in such transformations. Organometallic reagents are generated in situ from alkenes by hydrometallation and give highly enantioenriched products under mild reaction conditions. The method is used to synthesize natural products that possess activity against tuberculosis and leprosy, and an inhibitor of para-aminobenzoate biosynthesis. Mechanistic studies indicate that the reaction proceeds through a rapidly isomerizing intermediate. We anticipate that this approach will be a valuable complement to existing asymmetric catalytic methods.
first_indexed 2024-03-07T06:50:40Z
format Journal article
id oxford-uuid:fc74803e-bcfd-4cdb-a6ac-658f519a751d
institution University of Oxford
last_indexed 2024-03-07T06:50:40Z
publishDate 2015
publisher Nature Publishing Group
record_format dspace
spelling oxford-uuid:fc74803e-bcfd-4cdb-a6ac-658f519a751d2022-03-27T13:20:47ZNon-stabilized nucleophiles in Cu-catalysed dynamic kinetic asymmetric allylic alkylationJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:fc74803e-bcfd-4cdb-a6ac-658f519a751dORA DepositNature Publishing Group2015You, HRideau, ESidera, MFletcher, SThe development of new reactions forming asymmetric carbon–carbon bonds has enabled chemists to synthesize a broad range of important carbon-containing molecules, including pharmaceutical agents, fragrances and polymers. Most strategies to obtain enantiomerically enriched molecules rely on either generating new stereogenic centres from prochiral substrates or resolving racemic mixtures of enantiomers. An alternative strategy—dynamic kinetic asymmetric transformation—involves the transformation of a racemic starting material into a single enantiomer product, with greater than 50 per cent maximum yield2. The use of stabilized nucleophiles (pKa < 25, where Ka is the acid dissociation constant) in palladium-catalysed asymmetric allylic alkylation reactions has proved to be extremely versatile in these processes. Conversely, the use of non-stabilized nucleophiles in such reactions is difficult and remains a key challenge. Here we report a copper-catalysed dynamic kinetic asymmetric transformation using racemic substrates and alkyl nucleophiles. These nucleophiles have a pKa of ≥50, more than 25 orders of magnitude more basic than the nucleophiles that are typically used in such transformations. Organometallic reagents are generated in situ from alkenes by hydrometallation and give highly enantioenriched products under mild reaction conditions. The method is used to synthesize natural products that possess activity against tuberculosis and leprosy, and an inhibitor of para-aminobenzoate biosynthesis. Mechanistic studies indicate that the reaction proceeds through a rapidly isomerizing intermediate. We anticipate that this approach will be a valuable complement to existing asymmetric catalytic methods.
spellingShingle You, H
Rideau, E
Sidera, M
Fletcher, S
Non-stabilized nucleophiles in Cu-catalysed dynamic kinetic asymmetric allylic alkylation
title Non-stabilized nucleophiles in Cu-catalysed dynamic kinetic asymmetric allylic alkylation
title_full Non-stabilized nucleophiles in Cu-catalysed dynamic kinetic asymmetric allylic alkylation
title_fullStr Non-stabilized nucleophiles in Cu-catalysed dynamic kinetic asymmetric allylic alkylation
title_full_unstemmed Non-stabilized nucleophiles in Cu-catalysed dynamic kinetic asymmetric allylic alkylation
title_short Non-stabilized nucleophiles in Cu-catalysed dynamic kinetic asymmetric allylic alkylation
title_sort non stabilized nucleophiles in cu catalysed dynamic kinetic asymmetric allylic alkylation
work_keys_str_mv AT youh nonstabilizednucleophilesincucatalyseddynamickineticasymmetricallylicalkylation
AT rideaue nonstabilizednucleophilesincucatalyseddynamickineticasymmetricallylicalkylation
AT sideram nonstabilizednucleophilesincucatalyseddynamickineticasymmetricallylicalkylation
AT fletchers nonstabilizednucleophilesincucatalyseddynamickineticasymmetricallylicalkylation