U(1)-invariant special Lagrangian 3-folds II. Existence of singular solutions

This is the second of three papers math.DG/0111324, math.DG/0204343 studying special Lagrangian 3-submanifolds (SL 3-folds) N in C^3 invariant under the U(1)-action (z_1,z_2,z_3) --> (gz_1,g^{-1}z_2,z_3) for unit complex numbers g, using analytic methods. The three papers are surveyed in math...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Joyce, D
Μορφή: Journal article
Γλώσσα:English
Έκδοση: 2001
Περιγραφή
Περίληψη:This is the second of three papers math.DG/0111324, math.DG/0204343 studying special Lagrangian 3-submanifolds (SL 3-folds) N in C^3 invariant under the U(1)-action (z_1,z_2,z_3) --> (gz_1,g^{-1}z_2,z_3) for unit complex numbers g, using analytic methods. The three papers are surveyed in math.DG/0206016. If N is such a 3-fold then |z_1|^2-|z_2|^2=2a on N for some real number a. Locally, N can be written as a kind of graph of functions u,v : R^2 --> R satisfying a nonlinear Cauchy-Riemann equation depending on a, so that u+iv is like a holomorphic function of x+iy. The first paper math.DG/0111324 studied the case when a is nonzero. Then u,v are smooth and N is nonsingular. It proved existence and uniqueness for solutions of two Dirichlet problems derived from the equations on u,v. This implied existence and uniqueness for a large class of nonsingular U(1)-invariant SL 3-folds in C^3, with boundary conditions. In this paper and its sequel math.DG/0204343 we focus on the case a=0. Then the nonlinear Cauchy-Riemann equation is not always elliptic. Because of this there may be points (x,0) where u,v are not differentiable, corresponding to singular points of N. This paper is concerned largely with technical analytic issues, and the sequel with the geometry of the singularities of N. We prove a priori estimates for derivatives of solutions of the nonlinear Cauchy-Riemann equation, and use them to show existence and uniqueness of weak solutions u,v to the two Dirichlet problems when a=0, which are continuous and weakly differentiable. This gives existence and uniqueness for a large class of singular U(1)-invariant SL 3-folds in C^3, with boundary conditions.