New Directions in Vector Space Models of Meaning
Symbolic approaches have dominated NLP as a means to model syntactic and semantic aspects of natural language. While powerful inferential tools exist for such models, they suffer from an inability to capture correlation between words and to provide a continuous model for word, phrase, and document s...
Auteurs principaux: | Grefenstette, E, Hermann, K, Dinu, G, Blunsom, P |
---|---|
Format: | Journal article |
Publié: |
2014
|
Documents similaires
-
The Role of Syntax in Vector Space Models of Compositional Semantics
par: Hermann, K, et autres
Publié: (2013) -
"Not not bad" is not "bad": A distributional account of negation
par: Hermann, K, et autres
Publié: (2013) -
A convolutional neural network for modelling sentences
par: Kalchbrenner, N, et autres
Publié: (2014) -
A Convolutional Neural Network for Modelling Sentences
par: Kalchbrenner, N, et autres
Publié: (2014) -
A Deep Architecture for Semantic Parsing
par: Grefenstette, E, et autres
Publié: (2014)