New Directions in Vector Space Models of Meaning
Symbolic approaches have dominated NLP as a means to model syntactic and semantic aspects of natural language. While powerful inferential tools exist for such models, they suffer from an inability to capture correlation between words and to provide a continuous model for word, phrase, and document s...
主要な著者: | Grefenstette, E, Hermann, K, Dinu, G, Blunsom, P |
---|---|
フォーマット: | Journal article |
出版事項: |
2014
|
類似資料
-
The Role of Syntax in Vector Space Models of Compositional Semantics
著者:: Hermann, K, 等
出版事項: (2013) -
"Not not bad" is not "bad": A distributional account of negation
著者:: Hermann, K, 等
出版事項: (2013) -
A convolutional neural network for modelling sentences
著者:: Kalchbrenner, N, 等
出版事項: (2014) -
A Convolutional Neural Network for Modelling Sentences
著者:: Kalchbrenner, N, 等
出版事項: (2014) -
A Deep Architecture for Semantic Parsing
著者:: Grefenstette, E, 等
出版事項: (2014)