New Directions in Vector Space Models of Meaning
Symbolic approaches have dominated NLP as a means to model syntactic and semantic aspects of natural language. While powerful inferential tools exist for such models, they suffer from an inability to capture correlation between words and to provide a continuous model for word, phrase, and document s...
Главные авторы: | Grefenstette, E, Hermann, K, Dinu, G, Blunsom, P |
---|---|
Формат: | Journal article |
Опубликовано: |
2014
|
Схожие документы
-
The Role of Syntax in Vector Space Models of Compositional Semantics
по: Hermann, K, и др.
Опубликовано: (2013) -
"Not not bad" is not "bad": A distributional account of negation
по: Hermann, K, и др.
Опубликовано: (2013) -
A convolutional neural network for modelling sentences
по: Kalchbrenner, N, и др.
Опубликовано: (2014) -
A Convolutional Neural Network for Modelling Sentences
по: Kalchbrenner, N, и др.
Опубликовано: (2014) -
A Deep Architecture for Semantic Parsing
по: Grefenstette, E, и др.
Опубликовано: (2014)