The equilibrium measure for an anisotropic nonlocal energy
In this paper we characterise the minimisers of a one-parameter family of nonlocal and anisotropic energies 𝐼𝛼 defined on probability measures in ℝ𝑛, with 𝑛≥3. The energy 𝐼𝛼 consists of a purely nonlocal term of convolution type, whose interaction kernel reduces to the Coulomb potential for 𝛼=0 and...
Päätekijät: | Carrillo, JA, Mateu, J, Mora, MG, Rondi, L, Scardia, L, Verdera, J |
---|---|
Aineistotyyppi: | Journal article |
Kieli: | English |
Julkaistu: |
Springer
2021
|
Samankaltaisia teoksia
-
A maximum-principle approach to the minimisation of a nonlocal dislocation energy
Tekijä: Joan Mateu, et al.
Julkaistu: (2020-05-01) -
The ellipse law: Kirchhoff meets dislocations
Tekijä: Carrillo de la Plata, JA, et al.
Julkaistu: (2019) -
Equilibria of an anisotropic nonlocal interaction equation: analysis and numerics
Tekijä: Carrillo, JA, et al.
Julkaistu: (2021) -
MHD turbulence: Nonlocal, anisotropic, nonuniversal?
Tekijä: Schekochihin, A, et al.
Julkaistu: (2008) -
Minimizers of 3D anisotropic interaction energies
Tekijä: Carrillo, JA, et al.
Julkaistu: (2023)