CHIP-mediated degradation and DNA damage-dependent stabilization regulate base excision repair proteins.
Base excision repair (BER) is the major pathway for processing of simple lesions in DNA, including single-strand breaks, base damage, and base loss. The scaffold protein XRCC1, DNA polymerase beta, and DNA ligase IIIalpha play pivotal roles in BER. Although all these enzymes are essential for develo...
Main Authors: | Parsons, J, Tait, P, Finch, D, Dianova, I, Allinson, S, Dianov, G |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado em: |
2008
|
Registos relacionados
-
DNA polymerase beta promotes recruitment of DNA ligase III alpha-XRCC1 to sites of base excision repair.
Por: Parsons, J, et al.
Publicado em: (2005) -
XRCC1-DNA polymerase beta interaction is required for efficient base excision repair.
Por: Dianova, I, et al.
Publicado em: (2004) -
XRCC1 phosphorylation by CK2 is required for its stability and efficient DNA repair.
Por: Parsons, J, et al.
Publicado em: (2010) -
Repair of abasic sites in DNA.
Por: Dianov, G, et al.
Publicado em: (2003) -
Poly(ADP-ribose) polymerase-1 protects excessive DNA strand breaks from deterioration during repair in human cell extracts.
Por: Parsons, J, et al.
Publicado em: (2005)