The uniform schanuel conjecture over the real numbers

We prove that Schanuel's conjecture for the reals is equivalent to a uniform version of itself. © 2006 London Mathematical Society.

Бібліографічні деталі
Автори: Kirby, J, Zilber, B
Формат: Journal article
Мова:English
Опубліковано: 2006
_version_ 1826306940011020288
author Kirby, J
Zilber, B
author_facet Kirby, J
Zilber, B
author_sort Kirby, J
collection OXFORD
description We prove that Schanuel's conjecture for the reals is equivalent to a uniform version of itself. © 2006 London Mathematical Society.
first_indexed 2024-03-07T06:55:31Z
format Journal article
id oxford-uuid:fe0882c8-4e5b-4fd7-8f6e-e91902146f8c
institution University of Oxford
language English
last_indexed 2024-03-07T06:55:31Z
publishDate 2006
record_format dspace
spelling oxford-uuid:fe0882c8-4e5b-4fd7-8f6e-e91902146f8c2022-03-27T13:33:03ZThe uniform schanuel conjecture over the real numbersJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:fe0882c8-4e5b-4fd7-8f6e-e91902146f8cEnglishSymplectic Elements at Oxford2006Kirby, JZilber, BWe prove that Schanuel's conjecture for the reals is equivalent to a uniform version of itself. © 2006 London Mathematical Society.
spellingShingle Kirby, J
Zilber, B
The uniform schanuel conjecture over the real numbers
title The uniform schanuel conjecture over the real numbers
title_full The uniform schanuel conjecture over the real numbers
title_fullStr The uniform schanuel conjecture over the real numbers
title_full_unstemmed The uniform schanuel conjecture over the real numbers
title_short The uniform schanuel conjecture over the real numbers
title_sort uniform schanuel conjecture over the real numbers
work_keys_str_mv AT kirbyj theuniformschanuelconjectureovertherealnumbers
AT zilberb theuniformschanuelconjectureovertherealnumbers
AT kirbyj uniformschanuelconjectureovertherealnumbers
AT zilberb uniformschanuelconjectureovertherealnumbers