On the Growth of Groups and Automorphisms.
We consider the growth functions beta(Gamma)(n) of amalgamated free products Gamma = A *(C) B, where A congruent to B are finitely generated, C is free abelian and \A/C\ = A/B\ = 2. For every d is an element of N there exist examples with beta(Gamma)(n) similar or equal to n(d+1)beta(A)(n). There al...
Hoofdauteur: | Bridson, M |
---|---|
Formaat: | Conference item |
Gepubliceerd in: |
2005
|
Gelijkaardige items
-
On the growth of groups and automorphisms
door: Bridson, MR
Gepubliceerd in: (2005) -
Automorphisms of automorphism groups of free groups
door: Bridson, M, et al.
Gepubliceerd in: (2000) -
ON THE GEOMETRY OF THE AUTOMORPHISM GROUP OF A FREE GROUP
door: Bridson, M, et al.
Gepubliceerd in: (1995) -
Homomorphisms from automorphism groups of free groups
door: Bridson, M, et al.
Gepubliceerd in: (2002) -
Mapping class groups and outer automorphism groups of free groups are
C*-simple
door: Bridson, M, et al.
Gepubliceerd in: (2003)