EpiBeds: Data informed modelling of the COVID-19 hospital burden in England
The first year of the COVID-19 pandemic put considerable strain on healthcare systems worldwide. In order to predict the effect of the local epidemic on hospital capacity in England, we used a variety of data streams to inform the construction and parameterisation of a hospital progression model, Ep...
Main Authors: | Overton, CE, Pellis, L, Stage, HB, Scarabel, F, Burton, J, Fraser, C, Hall, I, House, TA, Jewell, C, Nurtay, A, Pagani, F, Lythgoe, KA |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Public Library of Science
2022
|
Similar Items
-
EpiBeds: Data informed modelling of the COVID-19 hospital burden in England.
by: Christopher E Overton, et al.
Published: (2022-09-01) -
Challenges in control of COVID-19: short doubling time and long delay to effect of interventions
by: Pellis, L, et al.
Published: (2021) -
Challenges in control of Covid-19: short doubling time and long delay to effect of interventions
by: Pellis, L, et al.
Published: (2020) -
Unsupervised identification of significant lineages of SARS-CoV-2 through scalable machine learning methods
by: Cahuantzi, R, et al.
Published: (2024) -
Challenges for modelling interventions for future pandemics
by: Kretzschmar, ME, et al.
Published: (2022)