EpiBeds: Data informed modelling of the COVID-19 hospital burden in England
The first year of the COVID-19 pandemic put considerable strain on healthcare systems worldwide. In order to predict the effect of the local epidemic on hospital capacity in England, we used a variety of data streams to inform the construction and parameterisation of a hospital progression model, Ep...
主要な著者: | Overton, CE, Pellis, L, Stage, HB, Scarabel, F, Burton, J, Fraser, C, Hall, I, House, TA, Jewell, C, Nurtay, A, Pagani, F, Lythgoe, KA |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Public Library of Science
2022
|
類似資料
-
EpiBeds: Data informed modelling of the COVID-19 hospital burden in England.
著者:: Christopher E Overton, 等
出版事項: (2022-09-01) -
Challenges in control of COVID-19: short doubling time and long delay to effect of interventions
著者:: Pellis, L, 等
出版事項: (2021) -
Challenges in control of Covid-19: short doubling time and long delay to effect of interventions
著者:: Pellis, L, 等
出版事項: (2020) -
Unsupervised identification of significant lineages of SARS-CoV-2 through scalable machine learning methods
著者:: Cahuantzi, R, 等
出版事項: (2024) -
Challenges for modelling interventions for future pandemics
著者:: Kretzschmar, ME, 等
出版事項: (2022)